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Abstract

Background: Previous research has revealed links between air pollution exposure and metabolic 

syndrome in adults; however, these associations are less explored in children.

Objective: This study aims to investigate the association between traffic-related air pollutants 

(TRAP) and biomarkers of metabolic dysregulation, oxidative stress, and lung epithelial damage in 

children.

Methods: We conducted cross-sectional analyses in a sample of predominantly Latinx, low-

income children (n=218) to examine associations between air pollutants (nitrogen dioxide (NO2), 

nitrogen oxides (NOx), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAH), carbon 

monoxide (CO), fine particulates (PM2.5)) and biomarkers of metabolic function (high density 

lipoprotein (HDL), hemoglobin A1c (HbA1c), oxidative stress (8-isoprostane), and lung epithelial 

damage (club cell protein 16 (CC16)).
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Results: HDL cholesterol showed an inverse association with NO2 and NOx, with the strongest 

relationship between HDL and 3-month exposure to NO2 (−15.4 mg/dL per IQR increase in 

3-month NO2, 95% CI = −27.4, −3.4). 8-isoprostane showed a consistent pattern of increasing 

values with 1-day and 1-week exposure across all pollutants. Non-significant increases in % 

HbA1c were found during 1-month time frames and decreasing CC16 in 3-month exposure time 

frames.

Conclusion: Our results suggest that TRAP is significantly associated with decreased HDL 

cholesterol in longer-term time frames and elevated 8-isoprostane in shorter-term time frames. 

TRAP could have the potential to influence lifelong metabolic patterns, through metabolic effects 

in childhood.

INTRODUCTION

Growing evidence suggests a link between PM2.5 exposure and metabolic dysfunction at 

a population level (1). Metabolic syndrome and its components, such as insulin resistance, 

central adiposity, elevated blood pressure, and dyslipidemia (2) have all been shown to 

have a positive association with air pollution exposure (3–7). This is thought to be due to 

higher levels of oxidative stress (8–10) and upregulated inflammatory responses in tissues 

of distant organs, such as the liver, pancreas, and adipose tissue (4,6). These processes can 

lead to clinically harmful effects such as glucose intolerance related to insulin resistance and 

increased cardiovascular morbidity (6,11–14).

While the relationship between traffic-related air pollution (TRAP) and effects on metabolic 

dysregulation is well-studied in adults, there are still gaps in the literature concerning 

these effects in children. TRAP is a category of pollutants that are emitted from motor 

vehicle emissions that result from fossil fuel combustion, and has been associated with 

adverse health effects in adulthood, such as metabolic and cardiovascular diseases (15). 

Since childhood or prenatal exposures to TRAP have been hypothesized to contribute 

to metabolic syndrome in adults, health effects of these exposures in children have the 

potential to contribute to childhood disease as well as to long-term risk of adult diseases 

(16,17). Adolescent cohort studies have demonstrated significant associations between 

TRAP exposure and the risk factors for Diabetes Mellitus Type II (DMII), such as lower 

insulin sensitivity and higher abdominal adiposity, fasting insulin and fasting glucose 

(6,18,19). Currently, the hypothesized biological mechanism behind this association is that 

localized lung inflammation may trigger oxidative stress and an inflammatory response, 

which spills over to the circulatory system. This increases systemic inflammation, leading 

to adverse metabolic and cardiovascular health effects (4,12). More research is needed in 

this area to elucidate and confirm this suspected relationship, especially in pediatric cohort 

studies to gauge the effect of early life exposure to traffic air pollution on later development 

of metabolic syndrome.

The Children’s Health and Air Pollution Study (CHAPS) is a research project focused on 

the adverse health effects of exposure to air pollution in childhood in Fresno, California. 

Located at the center of the San Joaquin Valley, Fresno residents are exposed to some of 

the worst air pollution in the United States (20). Moreover, the city also has high rates of 
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poverty and a large Hispanic/Latinx population (21): groups that are often disproportionately 

affected by air pollution exposures due to close proximity to traffic sources (22). This paper 

investigates the relationship between exposure to TRAP and several biomarkers of lipid and 

glucose metabolism (HDL and HbA1c), oxidative stress (urinary 8-isoprostane) and airway 

injury (CC16) in a population of low-SES (socioeconomic status), mostly Latinx children 

with an average age of 9.5 years. The aim is to build upon an earlier CHAPS analysis 

that assessed data from the cohort at age 7 and found significant associations between 

longer-term exposures between TRAP and HbA1c and systolic blood pressure, as well as 

shorter-term exposures between TRAP and urinary 8-isoprostane (23). This follow-up cross-

sectional analysis is focused on biomarker data from visits 2 years after that baseline visit, 

including new biomarkers not measured previously (HDL and CC16). We hypothesized that 

we would see similar patterns related to TRAP exposure in these biomarkers as was seen in 

the prior analyses (increases in HbA1c and systolic blood pressure), with decreases in HDL 

and changes in CC16 that could be time-frame dependent (increases in the short term with 

decreases associated with longer-term exposures).

METHODS

Study population

The data for these analyses were collected during the Children’s Health and Air Pollution 

Study (CHAPS), a prospective cohort study assessing the impact of air pollution on the 

health of children living in the Fresno metropolitan area. This study originally recruited 6- 

to 8- year-old children from elementary schools in Fresno during 2015 to 2017. Of the 299 

children initially recruited into the cohort, 73% were retained and had a visit approximately 

2 years later, which resulted in the 8 to 10-year-old study population for this project 

(Supplemental Figure 1). The details of the recruitment process are presented in a prior 

publication (23). A subset of the CHAPS participants (n=122) had an additional biomarker 

(CC16) assessed when additional funding became available.

At the follow-up study visit, each child participant’s parent or guardian was interviewed 

using a detailed, structured health and general history questionnaire, and for each child 

participant, a non-fasting blood sample and urine sample were obtained. The questionnaire 

was offered to participants’ parents or guardians in either English or Spanish and 

assessed participant demographics, including sex, age, and race/ethnicity, in addition to 

parental socioeconomic indicators such as annual household income, parental education 

levels, parental employment, and home ownership. Standing height was measured with 

a stadiometer and weight with a digital scale; from these BMI was calculated to use in 

describing the cohort (24). All study protocols were approved by the Institutional Review 

Boards at the University of California, Berkeley and Stanford University.

Outcome measurement

Blood specimens were collected by venipuncture by a trained phlebotomist, with serum 

collected in serum separator tubes and whole blood collected in EDTA vacutainers (Becton, 

Dickinson and Company, Franklin Lakes, NJ). The samples for HDL (measured in mg/dL) 

and % HbA1c measurement were retrieved at room temperature within 24 hours of draw 
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and assayed by a commercial laboratory (LabCorp) using standard clinical laboratory 

techniques. In order to minimize participant burden and maximize study participation, the 

study’s selection of biomarkers did not require children to fast before the visit and blood 

draws. Urine collected to assay 8-isoprostane, club cell secretory protein-16 (CC16) and 

creatinine was shipped overnight on a gel pack within 24 hours, or frozen before shipping to 

the Holland laboratory at UC Berkeley for urine analysis.

CC16 was assayed for a subset of participants at the same time as the CHAPS 9-year-old 

visit. CC16 was determined in urine by a commercially available ELISA kit (IBL-America, 

Minneapolis, MN). Samples were analyzed in duplicate, according to the manufacturer’s 

protocol, and additional quality controls included random repeats and lab controls. The 

limit of detection (LOD) for the CC16 assay was 2 ng/mL. The variability in readings 

(coefficient of variation) was 6.5% for duplicates and the random repeats were also within 

10%. Creatinine concentrations were determined in urine using commercially available 

ELISA (Oxford Biomedical Research, MI). Samples were randomized across plates and the 

coefficient of variation for creatinine was less than 3%. There is debate about whether CC16 

measurements should be adjusted for creatinine (25), thus a CC16/creatinine ratio was also 

calculated for use in a sensitivity analysis.

Urinary total 8-isoprostane was measured in the banked samples using an ELISA kit 

(Oxford Biomedical Research, Rochester Hills, MI) as previously described (26). Briefly, 

urine samples were pre-treated with beta-glucuronidase (Oxford Biomedical Research, 

Rochester Hills, MI) prior to running the ELISA. The limit of detection (LOD) for 

8-isoprostane concentration was 0.08 ng/mL. Undetected oxidative stress measures were 

replaced with the LOD divided by the square root of 2. Additional quality assurance/quality 

control (QA/QC) provisions included repeats of 5% of samples and blanks, and internal lab 

controls with good reproducibility of 8-isoprostane (coefficient of variation <7%). Samples 

were randomized across plates and the coefficient of variation for creatinine was less 

than 3%. All 8-isoprostane concentrations were adjusted to account for urinary dilution 

by dividing 8-isoprostane concentrations (ng/mL) by creatinine levels (mg/dL) with results 

reported in ng/mg creatinine.

Air pollution exposure assessment

Two methods were used to model outdoor residential air pollution exposure – interpolation 

using inverse distance-squared weighting (for carbon monoxide (CO) and particulate 

matter with aerodynamic diameter of < 2.5m (PM2.5)) and regression modeling (for all 

other pollutants we considered). Complete residential address history was obtained from 

participating families and exposure was matched to participants’ residential street addresses. 

Each address was then geocoded using ESRI (Environmental Systems Research Institute) 

software (Redlands, CA) or Google Earth, to develop a lifetime, residential history of 

each participant. Individual pollutant exposures were calculated for different time periods: 

1-day, the average pollutant exposure concentration in the 24 hours from noon the day of 

biospecimen collection to noon the day prior to when the biospecimen was obtained from 

the participant; mean week, which is average pollutant exposure the week before study date; 

1-, 3-, and 6-month averages, which are the average exposures for each of these monthly 
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intervals prior to the study date (e.g., the 1-month average represents the average daily 

exposure during the month prior to the study date); and 1-year average, which is average 

exposure the year before study date. The major source of these pollutants in Fresno is 

on-road traffic, not commercial, industrial, or off-road mobile sources (27).

Linear regression with mixed effects (random and fixed) was used to develop spatiotemporal 

models of daily average concentrations for PAH456, EC, NO2, and NOx incorporating 

data from field sampling campaigns in Fresno and Clovis (28,29). Briefly, hourly, quality-

assured ambient pollutant (CO, nitrogen dioxide (NO2), nitrogen oxides (NOx), and PM2.5) 

concentration and meteorological data collected at the local air pollution control district’s 

Fresno central site monitoring station (First St./Garland) and three other sites in Fresno 

were obtained from the U.S. Environmental Protection Agency’s (EPA) Air Quality System 

(AQS) (30). Elemental carbon (EC) and the sum of polycyclic aromatic hydrocarbons 

with 4-, 5-, and 6-rings (fluoranthene, benz[a]anthracene, chrysene, benzo[a]pyrene, 

benzo[b]fluoranthene, benzo[k]flouoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, 

and dibenz[a,h]anthracene; abbreviated PAH456) were monitored as described in a prior 

publication, which also discusses further details describing the CHAPS air pollution 

exposure assessment methods (23).

Statistical analysis

All four biomarker outcomes were continuous variables. To quantify a relationship between 

biomarker levels and air pollutant exposures, regression analyses were conducted in the 

statistical programming language R version 4.0.4, using the packages ggplot2, gridExtra, 

lubridate, tidyverse, and tinytex for data manipulation/presentation, and the packages 

mgcv, splines and corrarray for assessing associations between variables. Generalized 

additive models were used, with a p-spline smoothing function to account for seasonality. 

Distributions of 8-isoprostane:creatinine ratio and CC16 were right-skewed; to normalize 

both distributions, we conducted a log transformation of these outcome variables. 

Confounding variables were chosen using a directed acyclic graph (Supplemental Figure 

2) and prior knowledge (23). All models were adjusted for the following covariates: whether 

the child lives with a smoker, whether the child is Latinx, physical activity, household 

income and the smoothed term for the day of the study. Sensitivity analyses were performed 

to assess differences based on creatinine adjustment of CC16 and choice of the smoothing 

function for seasonality. Model results are presented for a single interquartile range (IQR) 

change in that pollutant, for the given exposure average (IQR values are listed in each of the 

results tables as well as in Supplemental Table 1).

RESULTS

The study cohort consisted of 218 children: 46.8% of the sample was female, and 81.7% 

was Latinx (Table 1). This was a sample with low socio-economic status; 24.3% of the study 

participants were from a family with <$15,000 annual household income, and 70% of the 

study population did not own a home. Summary characteristics (median, 25th percentile, 

75th percentile) for pollutant exposures are presented in Supplemental Table 1 and for 

outcome biomarkers in Supplemental Table 2.
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Correlation matrices of outcome variables and exposure correlations by pollutant and 

exposure duration are shown in Supplemental Tables 3a and 3b. NO2, PAH456, CO, and 

PM2.5 were highly correlated from 1-month through 6-month exposure averages, and NO2 

and NOx were very highly correlated from 1-week through 6-month exposure averages. 

Due to these correlations and the large number of pollutant-outcome relationships assessed, 

results are interpreted as the effect of TRAP, by assessing patterns in the pollutant-biomarker 

relationships rather than for individual pollutants presented.

For biomarkers of metabolic dysregulation, there was a consistent pattern of decreasing 

HDL with increasing pollutant exposure across multiple time frames (Table 2, Figure 

1A). The largest decrease in HDL was seen in CO exposure averaged over the 3-month 

period (−22.8 mg/dL per 0.5 ppm increase in CO, CI = −44.1, −1.53) and NO2 exposure 

averaged over a 3-month period (−15.4 mg/dL per 9.3 ppb increase in NO2, 95% CI 

= −27.4, −3.4). HDL consistently decreased in association with longer-term NO2 and 

NOx exposure (3-month, 6-month, 1-year). Though some exposure windows did not reach 

statistical significance, there was also a consistent pattern of decreased HDL with increased 

longer-term exposure to CO, PAH456, EC, and PM2.5. Percent HbA1c showed a pattern of 

non-significant increases during 1-month exposure time frames for several pollutants (Table 

3, Figure 1B): NO2, PAH456, EC, CO and PM2.5.

Higher levels of 8-isoprostane were associated with short-term exposure to all measured 

traffic-related pollutants (Table 4, Figure 1C). The largest increase in 8-isoprostane was 

associated with 1-day lagged PAH456 exposure (1.5 times the 8-isoprostane level per 

7.7 ng/m3 increase in PAH456, 95% CI = 1.1, 2.1) and 1-day lagged CO (1.3 times the 

8-isoprostane level per 0.5 ppm increase in CO, 95% CI = 1.1, 1.7). The 8-isoprostane 

levels were primarily increased with short-term increases in pollutants; however, pollutant 

associations with 8-isoprostane dissipated at longer time frames (3 months to one year).

CC16 showed a consistent pattern of decreases associated with exposures to traffic-related 

pollutants, even when confidence intervals cross the null (Table 5, Figure 1D). Across 

all pollutants, the 3 to 6-month exposure time frames were associated with the largest 

decreases in CC16 level. The association with the largest magnitude was 6-month average 

EC exposure, a 0.2 μg/m3 increase in EC was associated with 0.5 times the CC16 level, 95% 

CI = 0.3, 0.8).

In sensitivity analyses, the pattern of findings was unchanged when CC16 was adjusted for 

creatinine. The pattern of findings was also robust to the choice of the smoothing function 

for seasonality.

DISCUSSION

In this well-characterized 9-year-old child cohort, we found a consistent pattern of decreased 

HDL cholesterol across all NOX and NO2 exposure time frames and longer-term (1-, 3-

month and 1-year) time frames for most pollutants, a pattern of elevated 8-isoprostane levels 

during short-term (1-day, 1-week) exposure periods, non-significant increases in percent 

HbA1c during 1-month exposure time frames, and non-significant decreases in CC16 during 
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3-month exposure time frames. These results indicate a relationship between TRAP and 

markers of oxidative stress and metabolism in 9-year-old children, as previously found in 

this cohort at age 7, and possible associations with lung epithelial injury as well.

High-density lipoproteins play a role in cardiovascular protective actions by eliminating 

excess cholesterol in arterial walls and providing anti-inflammatory properties (31). 

Decreasing HDL cholesterol with increasing levels of air pollution in this study is consistent 

with previous adult epidemiologic studies demonstrating increased metabolic dysregulation 

associated with higher air pollutant exposure (32–34). Other studies in pediatric populations 

have demonstrated associations between exposure to particulate matter, nitrogen oxides 

or combined pollutant indices with worsened biomarkers of metabolic dysregulation 

(plasma insulin, fasting glucose, oxidized low-density lipoprotein), and oxidative stress 

(malondialdehyde), as well as anthropometric measures (elevated BMI, systolic and diastolic 

blood pressure) (19,35). However, the results in this study contrast those of a cross-sectional 

analysis conducted in an Italian birth cohort that found no association between TRAP 

and HDL cholesterol (36). This may be attributable to differences in study population 

characteristics, as in the Italian cohort 9.29% was obese and overweight, while the CHAPS 

cohort has 48.7% obese and overweight children. It is possible that children who are 

overweight could be more sensitive to the effects of air pollution on HDL, as has previously 

been shown for air pollution effects on pediatric blood pressure (37). The relationship 

between TRAP and HDL cholesterol in pediatric populations may be somewhat variable 

based on underlying population characteristics and is therefore worthy of further study.

TRAP exposure has been found in both experimental and epidemiologic studies to 

increase levels of reactive oxygen species that lead to higher levels of oxidative stress, 

resulting in degradation of important cellular molecules, such as lipids including HDL 

cholesterol (8,33,38). For instance, an experimental study using cultured pulmonary alveolar 

macrophages exposed to PAHs indicated that these compounds were metabolized by 

cytochrome P450A1 into quinones contributing to the generation of reactive oxygen 

species, thereby increasing levels of oxidative stress (39). This mechanism aligns with our 

study’s results on urinary 8-isoprostane, a stable biomarker of lipid peroxidation, which 

was elevated in association with short-term exposure periods of most of the TRAP we 

studied, but the association dissipated for longer exposure averages. This is consistent 

with the known half-life of 8-isoprostane (roughly 16 minutes in serum, likely moderately 

longer in urine) (40). Similarly, a large cross-sectional study of 2,035 adult participants 

in Framingham, MA, found that 3-to 7-day moving averages of black carbon (BC) and 

NOx exposure were also shown to be associated with increased urinary 8-isoprostane (41). 

Moreover, pediatric studies have also detected elevated concentrations of 8-isoprostane in 

exhaled breath condensates from children linked to BC exposure (42,43). The prior CHAPS 

analyses looking at the cohort at age 7 found that short-term average TRAP exposure (1-day, 

1-week and 1-month) was consistently and significantly associated with creatinine-adjusted 

urinary 8-isoprostane (23). Of the four pollutants assessed in the prior analysis—EC, NO2, 

PAH456 and PM2.5— the findings for the first three were very similar to those of the current 

study approximately 2 years later, with more precision in the estimates in the larger cohort at 

age 7. Interestingly, there was not a clear association between PM2.5 exposure and increased 

8-isoprostane in this analysis, whereas there had been at age 7. These findings provide 
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further evidence that air pollution can lead to oxidative stress in children as well as adults. 

Cytokine release from the inflammatory response to oxidative stress-induced lung injury can 

spill over into the circulatory system to cause systemic inflammation (4,12) and increase risk 

for several chronic disorders, including metabolic syndrome, atherosclerotic cardiovascular 

disease and type II diabetes (8).

HbA1c in this study showed a pattern of elevations associated with the 1-month moving 

average across several pollutants, most notably PAH456 and PM2.5, which can be attributed 

to circulating red blood cells having a life span of approximately 3–4 months (44). Because 

red blood cells constantly turn over, the one-month average will have a higher percentage 

of assayed cells that were present during that entire exposure duration, and this exposure 

window will represent most of the exposure window for half or more of the red cells present. 

The prior CHAPS paper analyzing the 7-year-old cohort found significant associations 

between 3 and 6-month TRAP exposure and increased percent changes of HbA1c (23). 

In adults, air pollution exposure is thought to contribute to type II diabetes (1,45,46). 

A recent birth cohort study found that prenatal exposure to PM2.5 was associated with 

increased HbA1c levels in prepubertal children of ages 4- to 5-years-old, suggesting that 

this relationship could hold for recent exposure in older children as well (47). Experimental 

animal studies observed exposure to particulate matter to be associated with changes in 

insulin sensitivity and amplified adipose inflammation in mouse models of diet-induced 

obesity (5), as well as induced in vivo expression of metabolic syndrome-related genes 

in mice, specifically genes related to inflammation, lipid and cholesterol metabolism and 

atherosclerosis (48). Based on this evidence from air pollution exposure in animal and 

epidemiology studies, insulin resistance, dyslipidemia and central adiposity may be related 

to particulate matter exposure via inflammatory pathways. These findings contribute to the 

limited literature thus far assessing this pathway in children.

Club cell secretory protein-16 (CC16), a biomarker of lung epithelial damage, is an 

anti-inflammatory protein secreted from club cells in response to oxidative stress and 

inflammation (49). We found a consistent trend of decreasing CC16 with longer exposure 

periods (3, 6-month) but with several confidence intervals crossing the null. Studies have 

shown that chronic exposure to air pollution, and especially to tobacco smoke, is associated 

with lower levels of CC16 and increased risk of chronic obstructive pulmonary disease 

(50), while short-term exposure is associated with elevated levels of CC16 (51). Because 

our outcomes were measured at one time point and associated with multiple pollutant 

exposure windows, it may be that effects in opposite directions obscure the short-term 

findings. In a longitudinal birth cohort study following participants from age 6 to 32, 

higher levels of early-life exposure to NO2 were associated with consistently lower levels 

of circulating CC16, indicating that increased NO2 exposure during childhood may impact 

critical windows of lung development (49). Because prior studies suggest that CC16 may 

be associated with long-term exposure to air pollution and decreases in lung function, it is 

particularly important that this relationship continue to be explored.

This research study has several strengths. These include a comprehensive and high-quality 

set of exposure data (including novel pollutants such as ambient PAHs), as well as a careful 
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assessment of biomarkers. This study also adds to the literature on health effects of pollution 

for children of color from low-income families.

Limitations include the cross-sectional analysis and relatively small sample size. Due to 

the large number of pollutants and exposure time frames, we mitigated the risk of type II 

errors from multiple comparisons by interpreting the results based on the general patterns 

of confidence intervals rather than looking at the significance level of each statistical test. A 

complete lipid panel for the study would have been preferable, but we tested only for HDL 

cholesterol instead since it does not require fasting prior to collection, creating less burden 

on participants.

Future avenues of research include running longitudinal analyses of the data from the 

CHAPS cohort at both ages seven and nine. Longitudinal analyses were not practical 

for some of these outcomes as most of the cohort did not have HDL cholesterol and 

none had CC16 measurements at age 7. Longitudinal assessments of the biomarkers and 

anthropometric data available at both time points are forthcoming in a future analysis.

Overall, our results support the hypothesis that acute exposure to TRAP impacts metabolic 

function in children. Low-grade systemic inflammation is associated with metabolic 

syndrome in adults, and is an important factor in instigating premature atherosclerosis (52). 

For this reason, it is crucial to consider whether early-life exposure to ambient air pollution 

could contribute to later-life cardiometabolic disease (17,53). Evidence of linkage between 

TRAP exposure and the biomarkers measured in our study suggests that air pollution 

contributes to abnormal lipid and glucose metabolism in children, which may then lead to 

increased risk of metabolic syndrome in adulthood. This relationship between traffic-related 

air pollution and metabolic function in children argues for public health actions that could 

further decrease exposures to air pollution during childhood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Associations of 1-day, 1-week, 1-month, 3-month, 6-month, 1-year averages of air 
pollutants with estimated
(A) change in HDL (mg/dL) (B) change in HbA1c (%) (C) multiplicative change in loge 

creatinine adjusted 8-isoprostane (ng/mg) (D) multiplicative change in loge CC16 (ng/mL)
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Table 1.

Socio-demographic characteristics of the CHAPS cohort (at the 9-year-old visits).

Characteristics No. (%) or Mean [SD]

Study cohort size 218

Age, mean [SD] 9.46 [0.62]

Girls (%) 102 (46.8%)

Race / Ethnicity (%)

 Latinx 178 (81.7%)

 African American 17 (7.8%)

 Non-Hispanic White 16 (7.3%)

 Other 7 (3.2%)

Annual household income < $15K (%) 53 (24.3%)

Owns Home (%) 65 (29.8%)

Lives With Smoker (%) 42 (19.3%)

Activity Level Compared to Children Their Age (%)

 Less Active 20 (9.2%)

 About As Active 135 (61.9%)

 More Active 63 (28.9%)

Overweight
a 42 (19.3%)

Obese
a 64 (29.4%)

Highest Maternal Education Level (%)

 < 8th grade 28 (12.9%)

 Some High School 37 (17.1%)

 Completed High School or GED 52 (24.0%)

 Some College 54 (24.9%)

 Completed College 35 (16.1%)

 Advanced Degree 11 (5.1%)

a
Using age-and sex-specific percentiles of the 2000 CDC growth charts, obese was defined as BMI ≥ 95th percentile and overweight was defined as 

BMI 85th to <95th percentiles.
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Table 2:
HDL cholesterol Generalized Additive Model results.

All results are absolute changes in HDL (mg/dL) per Interquartile Range (IQR) of the pollutant. These 

estimates come from a GAM model that adjusted for whether or not the child lives with a smoker, whether or 

not the child is Latinx, physical activity, household income and a smoothed term for the day of study.

Pollutant 1-day average 1-week average
1-month 
average 3-month average 6-month average 1-year average

NO2 (ppb) IQRs 9.4 10.1 9.7 9.3 6.0 2.2

 Estimate −5.10 −4.60 −0.10 −15.40 −7.90 −3.10

 95% CI (−8.4,−1.8) (−8.7,−0.6) (−3.2,3) (−27.4,−3.4) (−15.4,−0.4) (−6.3,0.1)

 P-value 0.003 0.026 0.95 0.013 0.041 0.057

NOX (ppb) IQRs 13.1 13.4 14.7 12.6 8.7 3.5

 Estimate −1.20 −4.20 −6.80 −6.70 −3.60 −2.90

 95% CI (−4.1,1.7) (−8,−0.5) (−13.9,0.2) (−13,−0.3) (−6.6,−0.5) (−5.4,−0.5)

 P-value 0.404 0.027 0.06 0.042 0.022 0.018

PAH456 (ng/m3) IQRs 7.7 7.9 8.4 7.9 5.2 0.8

 Estimate 0.20 0.10 −0.40 −4.90 −2.70 −1.40

 95% CI (−2.6,3.1) (−2.9,3.1) (−3.9,3) (−17.5,7.7) (−6.5,1.1) (−4.3,1.4)

 P-value 0.869 0.957 0.81 0.448 0.163 0.327

EC (μg/m3) IQRs 0.5 0.4 0.4 0.3 0.2 0.1

 Estimate −1.40 −1.30 0.80 −6.00 −3.20 −1.70

 95% CI (−4.4,1.5) (−4,1.5) (−1.8,3.5) (−12,0.1) (−6.2,−0.3) (−4.2,0.7)

 P-value 0.33 0.366 0.536 0.054 0.034 0.172

CO (ppm) IQRs 0.5 0.6 0.6 0.5 0.3 0.1

 Estimate −2 −2.6 −0.4 −22.8 −5.4 −2.2

 95% CI (−5.6,1.6) (−7.7,2.5) (−4,3.1) (−44.1,−1.5) (−14.9,4.2) (−5.2,0.7)

 P-value 0.272 0.317 0.813 0.038 0.275 0.144

PM2.5 (μg/m3) IQRs 11.9 14.7 16.5 13.7 9.8 3.6

 Estimate 0 0.2 0.8 −2.2 −1.4 −0.8

 95% CI (−0.9,0.9) (−1.1,1.5) (−1.3,2.9) (−7.5,3.1) (−3.5,0.8) (−3.3,1.6)

 P-value 0.952 0.748 0.466 0.416 0.206 0.514
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Table 3:
HbA1c Generalized Additive Model results.

All results are absolute changes in % Hemoglobin A1c per Interquartile Range (IQR) of the pollutant. These 

estimates come from a GAM model that adjusted for whether or not the child lives with a smoker, whether or 

not the child is Latinx, physical activity, household income and a smoothed term for day of study.

Pollutant 1-day average 1-week average
1-month 
average

3-month 
average

6-month 
average 1-year average

NO2 (ppb) IQRs 9.4 10.1 9.7 9.3 6.0 2.2

 Estimate −0.06 −0.08 0.03 −0.11 −0.07 −0.05

 95% CI (−0.14,0.02) (−0.17,0.02) (−0.16,0.21) (−0.37,0.14) (−0.27,0.12) (−0.14,0.04)

 P-value 0.12 0.12 0.78 0.39 0.46 0.31

NOX (ppb) IQRs 13.1 13.4 14.7 12.6 8.7 3.5

 Estimate −0.03 −0.07 −0.01 −0.11 −0.06 −0.03

 95% CI (−0.1,0.05) (−0.16,0.02) (−0.17,0.15) (−0.27,0.06) (−0.19,0.06) (−0.09,0.02)

 P-value 0.46 0.15 0.89 0.21 0.34 0.25

PAH456 (ng/m3) IQRs 7.7 7.9 8.4 7.9 5.2 0.8

 Estimate 0.05 −0.07 0.23 −0.18 0.08 −0.01

 95% CI (−0.1,0.2) (−0.26,0.12) (−0.01,0.46) (−0.59,0.24) (−0.27,0.42) (−0.08,0.07)

 P-value 0.5 0.48 0.06 0.4 0.66 0.88

EC (μg/m3) IQRs 0.5 0.4 0.4 0.3 0.2 0.1

 Estimate −0.06 −0.07 0.04 −0.12 −0.06 −0.06

 95% CI (−0.14,0.01) (−0.14,0) (−0.07,0.16) (−0.28,0.04) (−0.2,0.07) (−0.13,0.01)

 P-value 0.1 0.04 0.47 0.13 0.37 0.1

CO (ppm) IQRs 0.5 0.6 0.6 0.5 0.3 0.1

 Estimate −0.02 −0.1 0.03 −0.21 −0.01 −0.03

 95% CI (−0.11,0.07) (−0.23,0.04) (−0.24,0.29) (−0.61,0.18) (−0.32,0.31) (−0.13,0.08)

 P-value 0.65 0.15 0.84 0.29 0.97 0.62

PM2.5 (μg/m3) IQRs 11.9 14.7 16.5 13.7 9.8 3.6

 Estimate −0.04 −0.04 0.14 −0.16 −0.06 0.01

 95% CI (−0.08,0.01) (−0.12,0.04) (−0.02,0.29) (−0.36,0.03) (−0.35,0.22) (−0.19,0.2)

 P-value 0.1 0.32 0.09 0.09 0.67 0.93
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Table 4:
8-isoprostane Generalized Additive Model results.

All results are multiplicative changes in 8-isoprostane to creatinine ratio (ng/mg) per Interquartile Range 

(IQR) of the pollutant. These estimates come from a GAM model that adjusted for whether or not the child 

lives with a smoker, whether or not the child is Latinx, physical activity, household income and a smoothed 

term for the day of study.

Pollutant 1-day average 1-week average
1-month 
average

3-month 
average

6-month 
average 1-year average

NO2 (ppb) IQRs 9.4 10.1 9.7 9.3 6.0 2.2

 Estimate 1.2 1.2 1.1 0.7 0.6 0.8

 95% CI (1,1.5) (0.9,1.5) (0.7,1.7) (0.4,1.3) (0.3,0.9) (0.7,1.1)

 P-value 0.094 0.213 0.818 0.316 0.023 0.178

NOX (ppb) IQRs 13.1 13.4 14.7 12.6 8.7 3.5

 Estimate 1.2 1.1 0.9 0.8 0.7 0.9

 95% CI (1,1.5) (0.9,1.4) (0.6,1.4) (0.5,1.2) (0.5,1) (0.8,1.1)

 P-value 0.021 0.246 0.752 0.234 0.048 0.236

PAH456 (ng/m3) IQRs 7.7 7.9 8.4 7.9 5.2 0.8

 Estimate 1.5 1.4 1.1 0.7 0.5 1

 95% CI (1.1,2.1) (0.9,2.2) (0.5,2) (0.2,1.7) (0.2,1.2) (0.8,1.2)

 P-value 0.019 0.089 0.87 0.4 0.136 0.832

EC (μg/m3) IQRs 0.5 0.4 0.4 0.3 0.2 0.1

 Estimate 1.2 1.3 1.1 0.8 0.9 1

 95% CI (1,1.4) (1.1,1.5) (0.8,1.5) (0.5,1.2) (0.6,1.3) (0.8,1.2)

 P-value 0.03 0.013 0.548 0.338 0.447 0.734

CO (ppm) IQRs 0.5 0.6 0.6 0.5 0.3 0.1

 Estimate 1.3 1.3 1.3 0.9 0.5 0.8

 95% CI (1.1,1.7) (0.9,1.8) (0.7,2.3) (0.4,2) (0.2,1) (0.6,1.1)

 P-value 0.014 0.143 0.434 0.826 0.059 0.228

PM2.5 (μg/m3) IQRs 11.9 14.7 16.5 13.7 9.8 6.7

 Estimate 1.1 0.9 0.6 0.3 0.6 1

 95% CI (0.9,1.3) (0.6,1.3) (0.3,1.2) (0.1,0.8) (0.1,2.5) (1,1.1)

 P-value 0.28 0.607 0.165 0.015 0.456 0.275
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Table 5:
CC16 Generalized Additive Model results.

All results are multiplicative changes in CC16 (ng/mL) per Interquartile Range (IQR) of the pollutant. These 

estimates come from a GAM model that adjusted for whether or not the child lives with a smoker, whether or 

not the child is Latinx, physical activity, household income and a smoothed term for day of study.

Pollutant 1-day average 1-week average
1-month 
average

3-month 
average

6-month 
average 1-year average

NO2 (ppb) IQRs 9.4 10.1 9.7 9.3 6.0 2.2

 Estimate 1.00 0.90 0.80 0.70 0.80 0.90

 95% CI (0.7,1.4) (0.6,1.2) (0.5,1.2) (0.4,1.1) (0.3,1.7) (0.6,1.4)

 P-value 0.98 0.35 0.36 0.14 0.49 0.64

NOX (ppb) IQRs 13.1 13.4 14.7 12.6 8.7 3.5

 Estimate 1.00 0.90 0.80 0.70 0.80 1.00

 95% CI (0.8,1.3) (0.7,1.2) (0.6,1.3) (0.5,1.1) (0.5,1.5) (0.7,1.3)

 P-value 0.83 0.44 0.45 0.16 0.57 0.82

PAH456 (ng/m3) IQRs 7.7 7.9 8.4 7.9 5.2 0.8

 Estimate 1.30 0.80 0.70 0.70 0.50 0.80

 95% CI (0.7,2.4) (0.6,1.2) (0.4,1.3) (0.4,1.2) (0.2,1.8) (0.5,1.1)

 P-value 0.47 0.36 0.27 0.19 0.33 0.17

EC (μg/m3) IQRs 0.5 0.4 0.4 0.3 0.2 0.1

 Estimate 1.10 0.90 0.90 0.60 0.50 0.70

 95% CI (0.8,1.6) (0.7,1.2) (0.6,1.6) (0.4,1) (0.3,0.8) (0.4,1.1)

 P-value 0.48 0.60 0.82 0.05 0.01 0.11

CO (ppm) IQRs 0.5 0.6 0.6 0.5 0.3 0.1

 Estimate 0.90 0.80 0.80 0.70 0.70 0.70

 95% CI (0.7,1.2) (0.5,1.2) (0.5,1.3) (0.4,1.2) (0.3,1.8) (0.4,1.1)

 P-value 0.51 0.25 0.40 0.17 0.47 0.14

PM2.5 (μg/m3) IQRs 11.9 14.7 16.5 13.7 9.8 3.6

 Estimate 1.00 0.90 0.80 0.70 0.50 0.50

 95% CI (0.8,1.2) (0.7,1.2) (0.5,1.2) (0.4,1.1) (0.2,1.3) (0.2,1)

 P-value 0.84 0.44 0.30 0.11 0.18 0.05

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2022 August 06.


	Abstract
	INTRODUCTION
	METHODS
	Study population
	Outcome measurement
	Air pollution exposure assessment
	Statistical analysis

	RESULTS
	DISCUSSION
	References
	Figure 1:
	Table 1.
	Table 2:
	Table 3:
	Table 4:
	Table 5:

